GRINDING PROFILE FORM OF LARGE-SCALE ROLL WORKPIECE ON CNC MACHINE

BY

EUGEN CARATA1*, MIHĂIȚĂ HORODINCĂ1 and LIVIU CAȘCAVAL2

1“Gheorghe Asachi” Technical University of Iași, Faculty of Machine Manufacturing and Industrial Management
2World Machinery Works SA Bacău

Received: July 15, 2015
Accepted for publication: October, 2015

Abstract. The need for higher quality and productivity in the metal rolling industry has driven the development of increasingly sophisticated models of metal rolling, both for mill set-up and for on-line control. One important area in which these models can be improved is in the strip profile in thin strip rolling. The quality of ultra thin strip production in a wide strip rolling mill depends on the careful selection of initial ground work roll profiles for each of the mill stands in the finishing train. These profiles were determined by human expert and manufactured on CNC ground machine. The rolls profiles, obtained with closed loop control, designed for straight, convex, concave or CVC rolls, is presented.

Key words: grinding, work roll profile, steel strip production.

1. Introduction

The need for higher quality and productivity in the metal rolling industry has driven the development of increasingly sophisticated models of
metal rolling, both for mill set-up and for on-line control. Large-scale roll workpieces with a length of up to 4000 mm and a diameter of over 1500 mm is currently required. One important area in which these models can be improved is in the strip profile in thin strip rolling. The quality of ultra thin strip production in a wide strip rolling mill depends on the careful selection of initial ground roll profiles for each of the mill stands in the finishing train (Sun et al., 2005). These profiles were determined by human expert and manufactured on CNC ground machine. Evaluation of the surface form error components of the roll workpiece is an important task for both the quality control and compensation machining of the roll workpiece (Lee et al., 2014).

2. Work Roll Profiles

To compensate for the predicted bending and thermal expansion, work rolls are ground to a convex or concave camber. Due to the abrasive nature of the oxide scale on the strip, the rolls also wear significantly. Due to this roll wear, the rolls need to be periodically reground on CNC grinding machine after a specified duty cycle, to re-establish the specified profile. The work rolls camber is usually sinusoidal (Fig. 1), CVC (Continuously Variable Crown) or polynomial in shape. The challenge is to find suitable work roll profiles – for each rolling program – capable of producing strip flatness and profile to specified tolerances. These are often later changed, e.g., by the rolling mill technical personnel in an effort to establish optimum profiles. This fine-tuning of the roll profiles is nearly always carried out empirically.

![Fig. 1 – The sinus convex shape of the roll](image)

There are many different profiles and combinations of profiles of mill rolls. In designing the roll profile, four principal factors must be considered: The first factor is the compatibility of the roll gap profile change caused by roll shifting with the desired change of the strip profile. When the rolls having
polynomial profile of the n^{th} order are shifted, the shift produces a change of the strip profile that is expressed by a polynomial of the $(n-1)^{th}$ order.

![Fig. 2 - The CVC shape of the roll](image)

The second factor is the effectiveness of the roll shifting "E". This factor is defined as the ratio of the change in the strip profile, Δc, to the roll shifting stroke, s, as shown in equation:

$$E = \frac{\Delta c}{s}$$

(1)

The shorter the roll shifting stroke, s, that can produce the same change in strip profile, Δc, the more effective the roll shifting actuator is. To increase the effectiveness of the roll shifting E it is necessary to use a roll profile that curies both up and down in respect to a roll axis. Among the known roll profiles, only cubic and CVC profiles meet this requirement.

The third factor is the shape of the roll contact between the rolls. To reduce the local contact stresses it is desirable to avoid "bulging" shapes in the roll such as typical for quadratic and CVC roll shapes (Fig. 2).

The fourth factor is the simplicity of grinding the roll profile. In the conventional rolls, the roll profile is symmetrical with respect to the center line of the roll. It permits to use of standard CNC grinding machines achieve a very high precision with which the roll profile can economically be made. All known roll profiles that are used with shifting rolls are non-symmetrical. This means they are not symmetrical with respect to the roll center line. To grind this profile, more expensive CNC grinding machines are required. The non-symmetrical roll profile is unavoidable to produce the effect of roll shifting on strip profile.
In the Fig.3-5 the rolls profiles, obtained with RGC 1400x5000 grinding CNC machine (WORLD MACHINERY WORKS Bacău – România), designed for straight, convex, concave or CVC rolls grinding, is presented. The research effort developed open-loop correction techniques for wheel path.

This effort involved predicting roll profile, supporting real-time, closed-loop machining with the integration of machining and inspection working steps within the NC program, for specified machining conditions and compensating by modifying the tool path. A CAD model with the planned wheel path was used to determine the grinding parameters (Fig. 5).
Compensation for tool wear has proven very successful and errors can be reduced.
3. Conclusions

The quality of ultra thin strip production in a wide strip rolling mill depends on the careful selection of initial ground work roll profiles. The experiment shows that the closed-loop machining with the integration of machining and inspection workingsteps within the NC program can improve the measurement precision more and is fit for engineering application.

REFERENCES

Lee J. C., Shimizu Y., Gao W., JeongSeok Oh, Park C. H. Precision evaluation of surface form error of a large-scale rollworkpiece on a drum roll lathe, Precision Engineering, 38, 839–848, 2014.

RECTIFICAREA CILINDRILOR DE LAMINOR DE MARI DIMENSIUNI PE MAŞINI DE RECTIFICAT CU CNC

(Rezumat)

Calitatea benzilor de tablă laminate la cald sau la rece depinde în mare măsură de alegerea tipului de profil pentru cilindri de lucru pentru fiecare cajă de finisare. Aceste profili sunt alese de specialiştii în procesul de laminare şi se realizată pe maşini grele de rectificat cu CNC. Lucrarea prezintă prioncipalele tipuri de profiluri utilizate şi factori care se iau în considerare la proiectarea acestora. Sunt prezentate profilurile obţinute prin prelucrare şi măsurare, în buclă închisă, pe maşina RGC 1500x4000 CNC (WORLD MACHINERY WORKS Bacău – România).