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Abstract. Assimilating the shape memory alloys as a complex systems, in 

the frame of Extendend Scale Relativity Theory, i.e. a fractal theory of motion 

with a arbitrary constant fractal dimension, some behaviours of such materials 

(shape memory effect, pseudo elasticity) are analyzed. In our opinion these 

behaviours can be associated to a pseudo intelligence of the shape memory 

alloys given by its “fractal neural network”. 
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1. Introduction 
 

Complex system is a very favorable medium for the appearance of 
instabilities (Chen, 1994; Morozov, 2012). These instabilities imply both chaos 
through different routes (intermittencies, quasi-periodicity, cascade of period-
doubling bifurcations, sub-harmonic bifurcations, torus breakdown) and self-
structuring through generation of complex structures (Dimitriu et al., 2007; Agop 
et al., 2013; Dimitriu et al., 2013). According to the classical concepts, all 
theoretical complex system models (fluid models, kinetic models, etc.) assume 
that the dynamics of the complex system particles occur on continuous and 
differentiable curves, so that they can be described in terms of continuous and 
differentiable motion variables (energy, momentum, density, etc.). These motion 
variables are exclusively dependent on the spatial coordinates and time. In reality, 
the complex system dynamics proves to be much more complex and the above 
simplifications cannot be expected to explain all of the aspects of the complex 
system dynamics. However, this situation can still be standardized if we consider 
that the complexity of complex system interaction processes impose different 
time resolution scales, while the evolution complex system patterns lead to 
different degrees of freedom. 

From the above mentioned arguments it results that the explication of the 
complex system dynamics can be based on the assumption that the motions of the 
complex system particles take place on continuous but non-differentiable curves 
(fractal curves) since, according to the procedures (Nottale, 1993; Nottale, 2011; 
Munceleanu et al., 2011; Agop & Magop, 2012), only a fractal curve is 
dependent on the scale resolution. Moreover, according to the methodology 
(Gouyet, 1992), through dynamics of special topologies which can implement 
evolution patterns in complex system, it can lead to various degrees of freedom. 
Such an assumption can be sustained by a typical example, related to the collision 
processes in complex system: between two successive collisions the trajectory of 
the complex system particle is a straight line that becomes non-differentiable at 
the impact point. Considering that all the collision impact points form an 
uncountable set of points, it results that the trajectories of the complex system 
particles become continuous but non-differentiable curves. 

Since the non-differentiability (fractality) appears as a fundamental 
property of the complex system dynamics, it seems necessary to construct a 
corresponding non-differentiable complex system physics. We assume that the 
complexity of interactions in the complex system dynamics is replaced by non-
differentiability (fractality). This topic (fractal motion) was systematically 
developed using either the Scale Relativity Theory (SRT) (Nottale, 1993; Nottale, 
2011), or the Extended Scale Relativity Theory (ESRT), i.e. the Scale Relativity 
Theory in an arbitrary constant fractal dimension (Munceleanu et al., 2011; Agop 
& Magop, 2012). 
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Therefore, as described above, a Euclidian dynamics of a complex system 
with external constraints is replaced with the fractal dynamics of a complex 
system free of any external constraints. Practically, the motion with constraints in 
the Euclidian space, i.e. on continuous and differentiable curves, is replaced by a 
motion free of constraints in the fractal space, i.e. on continuous but non-
differentiable curves. To do this, we have to admit the correspondence between 
the austenite-martensite phase transition in the shape memory alloys (Cisse et al., 
2016; Stanciu, 2009) and the “fractality” of the motion trajectories of the 
complex system structural units (given by means of the scale resolution and the 
fractal dimension of the motion curve).    

Let us reconsider the fractal hydrodynamic equations with an arbitrary 
constant fractal dimensions, i.e. the specific fractal momentum and fractal state 
density conservation laws (Munceleanu et al., 2011; Agop & Magop, 2012): 

( )l i l l

t i Q uν ν ν∂ ⋅ + ⋅∂ ⋅ = −∂ +                              (1) 

 ( ) 0l
t lρ ρν∂ ⋅ + ∂ ⋅ =                                      (2) 

with Q the specific fractal potential 
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In the previous relations 
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 = ∂ ⋅                                   (4) 

is the standard classical speed which is differentiable and independent of the 
scale resolution dt, 

( )
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lnF
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 
− 

 = ∂λ ρ                                     (5) 

is the non-standard speed which is non differentiable and scale resolution 
dependent, ρ the states density, U the external scalar potential, λ the fractal – non-
fractal transition coefficient and DF the fractal dimension of the motion curves. 
The speed fields νl and ul defines in the fractal space the complex speed field. 

( )
2

1
2 ln  F

l l l l
DV i dt iu

 
− 

 = − ∂ Ψ = −ɶ λ ν                            (6) 

with  isΨ = ρe  the wave function,  ρ  the amplitude and s the phase. We 

remind that for time scales that prove to be larger if compared with the inverse 
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of the highest Lyapunov exponent, the deterministic trajectories are replaces by 
a collection of potential paths and that the concept of “definite position” is 
substitute by that of the probability density. Thus Ψ does not have any physical 

significance but 
2

Ψ ρ≡  has, as a probability density. 

 
2. Fractal Hydrodynamic Equations 

 
We assume that the motions of the complex system structural units take 

place on continuous but non-differentiable curves (fractal curves). 
Any continuous but non-differentiable curve of the complex system 

particles (complex system fractal curve) is explicitly scale resolution dt 
dependent, i.e. , its length tends to infinity when dt tends to zero. 

We mention that, mathematically speaking, a curve is non-differentiable 
if it satisfied the Lebesgue theorem, i.e. its length becomes infinite when the 
scale resolution goes to zero (Mandelbrot, 1982). Consequently, in this limit, a 
curve is as zig-zagged as one can imagine. Thus, it exhibits the property of self-
similarity in every one of its points, which can be translated into a property of 
holography (every part reflects the whole) (Gouyet, 1992; Mandelbrot, 1982). 

 
3. Solution of Fractal Hydrodynamic Equations 

 for Fractal Static States 
 

Let us now consider the fractal static state 

( )( )2 -1
0 2 0F

l lD
t = ,   ν = λ dt s =∂ ∂                       (7) 

which implies “coherence states” (the structural units of the shape memory 
alloys (SMA) as a complex system) are in phase, i.e. s = const. Then the fractal 
hydrodynamics equations system (eqs. (1) - (3)) takes the following form: 

( ) ( )( )4 220 2 F

i
-l iD

ρ
Q +U = ,   - λ dt +U = E

ρ

∂ ⋅∂
∂               (8) 

where E = E  represents the total specific fractal energy of the fractal static 

states. The states density conservation law, eq. (2), is identical satisfied. 
In order to solve eq. (8) it should be known the functional dependence 

( )U =U ρ . The simplest choice is 1U = C ρ , with 1C  = const. In such condition 

eq. (2) in the one dimensional case and with the substitutions 

( )( )
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takes the shape of a Ginzburg – Landau equation type, which will be called 
Fractal Ginzburg Landau equation (FGLE) 

3
ξξu = u - u∂                                                 (10) 

Generally this type of equations always admits the solution 

( )0th 2cu = ξ -ξ / 
  (Cristescu, 2008). In the following we will build a new 

class of solution for the Ginzburg Landau fractal equation, through which uc 
will be find as a particular solution. From such a perspective by multiplying 
both sides of the eq. (10) with df / dξ  and performing the integration over ξ 
we obtain: 

1/2
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2
1
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                                      (11) 

where 
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                                (12) 

Eq. (12) is obviously a restriction imposted on the order parameter u, 
showing the boundary conditions a further integration of eq. (11) leads to 

( )

( )( )
0

1/2 1/20 2 2 2 2
1 2

2
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=

u - u u - u 
 

∫                         (13) 

where 

( )1/22
1,2 21 1-2u = C∓                                   (14) 

and ξ0 a new constant of integration. 
By the change of variable 1w = u / u  the integral (13) becomes: 

( )
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=
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∫                            (15) 

where 

1

2

u
k =

u
                                                      (16) 

Writing u1 and u2 in term of k: 
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the integral (15) becomes 
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with the superior limit 
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The integral (18) can be solved in terms of Jacobi elliptic function of 

argument ( ) ( )
1/22

01
-

+ k ξ - ξ  and the modulus k (Bowman, 1955). Indeed, by 

the version of the integral (18) it results the Jacobi’s elliptic function: 
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of periods: 
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from which the solution is obtained by returning to the previous variable u : 
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4. Conclusions 

 
We can now discuss some conclusions: 
i) The fractal state density takes the form: 

( ) ( )
2 2 2

2 2 20 0
2 1/2 2 2 1/22 2

2 2 2
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while the specific fractal potential: 

( )
( )

2 2
1 2 2 0

2 2 1/22

1 2
1 cn :

1 1 1

-
ξξ

ξ - ξ- k k
q = -u u = - u + k
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      (24) 

This mean that the functionality of a SMA is realized through cnoidals 
oscillatory modes of either fractal states density, or of the specific fractal 
potential; 

ii) The explicit form of the oscillatory modes can be obtained through 
the degeneration of elliptic function cn in modulus k. Thus for 

0k → ,  1 2

π
ω →  ,  2ω i→ ∞                                (25) 

we will have the degeneration 

cn cos→  

2 0n →                                                     (26) 

1q→  

For  

1k → ,  1ω →∞ ,  2ω iπ→                                     (27) 

we will have the degeneration 

cn sech→  

                                                2 2 0
1/2

th
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u
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                                            (28) 

2 0
1/2

sech
2

ξ - ξ
q

 →  
 

 

The degeneration (25) with (26) corresponds to harmonic package, 
while the degeneration (27) with (28) to solitonic package. For 0k ≡  harmonic 
sequence and for 1k ≡  solitonic sequence are obtained. We note that the 
degeneration 1k ≡  in solution (22) implies the standard solution cu ; 

iii) In the classical theory the cnoidal oscillation modes are associated 
to a Toda lattice (Cristescu, 2008), i.e. a system of coupled nonlinear oscillators. 
Following the same procedure we will attribute the fractal cnoidal oscillation 
modes to the Toda type fractal lattice. Then the modulus k of the elliptic 
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function cn becomes a measure of the coupling between the fractal oscillators of 
the Toda type fractal lattice:  0k →  shows the total decoupling of the 
oscillators while 1k →  shows the total coupling of the same oscillator. The 
functionality of the Toda type fractal lattice induces in the spectrum of the 
“fractal phononic field” an acoustic branch and an optical one. Such a 
dependence could explain why in the SMA materials are presented two phases, 
one called austenite (A), stable at high temperature and low stress and other one 
called martensite (M), metastable at low temperature and high stress; 

iv) In the standard theory through the mapping of a Toda 
unidimensional lattice (Cristescu, 2008) it can be reduced to a specific neural 
network. Following the same procedure but applied to our case, one could find 
the fractal neural networks having specific functions.  
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ASUPRA PSEUDOINTELIGENłEI ALIAJELOR 

 CU MEMORIA FORMEI 
DATĂ DE PROPRIA LOR REłEA NEURONALĂ FRACTALĂ 

 
(Rezumat)  

 
Asimilând aliajele cu memoria formei ca sisteme complexe, în cadrul unei 

teorii fractale a mişcării în dimensiune fractală arbitrar constantă, sunt analizate câteva 
comportamente specifice ale acestor aliaje. În opinia noastră aceste comportamente sunt 
dictate de acea presupusă inteligenŃă a materialelor cu memoria formei 
(pseudointeligenŃă) asociată propriei lor reŃele neuronale fractale. 
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