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Abstract. Considering that nervous impulse transmission in the brain 

neuronal network is achieved on continuous but non-differentiable curves 
(fractal curves), in the scale relativity hydrodynamic variant (with constant 
arbitrary fractal dimension) a special cellular neural network class at fractal scale 
is introduced. Thus, this solution with infinite fractal “energy” implies through a 
fractal potential cnoidal oscillation modes of the fractal states density. These 
modes can be associated with an one-dimensional Toda fractal lattice and, by 
mapping, with a fractal cellular neural network. The solution with finite fractal 
“energy” generated by a spontaneous symmetry breaking mechanism induces 
elements of a fractal logic as fractal bit, fractal gates etc. The implication of the 
model in the bacterial growth process is given.  

 

Keywords: fractal potential; fractal kink solution; symmetry breaking; 
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1. Introduction 
 
In recent papers (GavriluŃ et al., 2016; Butuc et al., 2016) it is proved 

that in the fractal approximation of the motion, one can introduce two new 
concepts of cellular neural networks, precisely, the differentiable cellular neural 
network and the non-differentiable cellular neural one. Their coherence assures 
not only the functional-structural compatibility of any living structure, but also 
their comunication code. 

In this paper we introduce a new class of cellular neural networks, 
based on the fractal potential. In such context, the spontaneous symmetry 
breaking will generate patterns. Based on their functionality, the specific 
communication code will be induced.  
 

2. Results and Discussions 
 

2.1. The Mathematical Model 

 
Let us consider the fractal hydrodynamic equations (Colotin et al., 

2009; Timofte et al., 2011). Then for the fractal static states, we have  

( )( )2/ 1
0, S 0FD

t D D dt
−

∂ = = ∇ =V                             (1) 

In phase coherence S = const. of the structural units (Mitchell, 2009) the 
fractal hydrodynamic equations become with the substitutions  

( )( )2/ 11/2, const. 0, , FD
U E E f D dtρ ρ

−
= = > = =D             (2) 

 become 
2

302m
f f f

E
∆ = −

D
                                           (3) 

Particularly, in the one-dimensional case 2 1/2
02= ( / ) ,x E mξ D  (3) takes 

the form:  
3   f f fξξ∂ = −                                             (4) 

One can refer to Timofte et al., 2011 for the significance of the 
quantities from (1)-(4). 

The eq. (4) can be also obtained by means of the fractal variational 

principle = 0Ldδ τ∫ , with dτ  the fractal elementary volume applied to the 

fractal Lagrangean density:  

( )21
( )

2
L f fξ= ∂ −℘                                   (5) 

 with the fractal potential  
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   

                                (6) 

The eq. = 0f∂ξξ  has the solutions (1) (2,3)= 0 1., =F Ff f ±   By calculating 

the second derivative with respect to ξ  of the fractal “potential” (6) and 

substituting the values (1,2,3)f  into the result of this differentiation we find 

(0) = 1, ( 1) = 2 > 0℘ − ℘ ±ξξ ξξ , i.e., the solution (2,3) = 1Ff ±  is associated with 

the minimum fractal “energy”. Hence, the model under consideration has a 
double degenerated vacuum fractal state. 

From (5) it results both fractal “energy”, 

( ) ) ( )
21

2
(f d f f

∞

−∞

∂ +℘= ∫ ξε ξ                            (7) 

 and the fractal “energy” relative to the fractal vacuum  

( ) ( ) ( ) ( )22 21 1
1

2 4
Ff f d f f

∞

−∞

− ∂ + −
 =   ∫ ξε ε ξ                  (8) 

Since all terms in (8) are positive and in view of the infinite limits of 
integration, the finiteness of the fractal “energy” implies that at ±∞→ξ  

( )221
0, 1 0

4
f f∂ = − =ξ                                            (9) 

From this, it follows that at ±∞→ξ , the function ( )f ξ  tends to its 

fractal vacuum value (2,3) 1.Ff ±→  In order to find the explicit form of the 

solution of (4), we multiply it by fξ∂  and subsequently over ξ . This yields  

2 4
2

0

1 1

2 2 4 2
( )

f f
f f∂ = − + +ξ                                 (10) 

 where 0f  is an integration constant. From this, we have:  

0
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0

0
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f f
f
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− +
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 where 0ξ  is the other integration constant. To this solution it corresponds for 

an arbitrary 0f , an infinite value of the fractal “energy” ( ).fε  To obtain the 
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solution with finite fractal “energy”, we make use of the boundary conditions 

(2,3) = 1.Ff ±  From (10) it results that 0

1
= .

2
f  Replacing this value of 0f  into 

(18), the solution ( )kf ξ  of the field eq. (10) with a finite fractal “energy” is  

( ) ( )0 01
( ) tanh

2
kf f= − = −

 
  

ξ ξ ξ ξ ξ                     (12) 

This is called the fractal kink solution. Combining (8) with the 

expression (2) = 1Ff  and the expression for kf , we obtain the fractal “energy” of 

the fractal kink relative to the fractal vacuum: 

( ) ( ) 2 3

3
k Ff f− =ε ε   .                                (13)                                                

The fractal kink solution is obtained by a fractal spontaneous symmetry 
breaking (the fractal vacuum state is not invariant with respect to the fractal group 
of transformations which makes invariant eq. (4), while the fractal lagrangean is 
invariant with respect to the same group) .  This corresponds to a fractal pattern. 
 

2.2. Fractal Topology and Logic 

 
A fractal topological method can be applied because the admissible 

number of fractal kinks is determined by the fractal topological properties of the 
fractal symmetry group of eq. (4). In this context, the following problems must 
be solved: 

i) The number of admissible fractal kink solutions determined by the 
fractal topological properties of the eq. (4);  

ii) The fractal topological charge. 

The fractal kink solution can be obtained as mapping of a fractal spatial 

zero-sphere S 0 , taken at infinity onto the fractal vacuum manifold of the model 
(4). The fractal homotopy group for this model is 0 0 2( ) =Z ZΠ , i.e., the model 

gives rise to two solutions: a constant solution and the fractal kink solution. 
Details on an usual homotopic mapping are given in Jackson, 1992. 

The associated fractal topological charge is: 

( ) ( )1 1 1
( )

2 2 2

df
q j d d f f

d

∞ ∞

−∞ −∞

= = = +∞ − −∞  ∫ ∫ξ ξ ξ
ξ

               (14) 

The fractal vacuum solution (absence of spatial gradients) and the 
fractal kink solution can be characterized by attributing the = 0q  and = 1q , 
respectively (the result is obtained by an adequate normalization f ). Since (4) is 
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a fractal Ginzburg-Landau equation type, it follows that = 0q  and the fractal 
vacuum solution describes the behavior of the fractal fluid in the absence of 
self-structuring, i.e., its fractal ground states, while = 1q  and the fractal kink 
solution describes the behavior of the fractal fluid in the presence of self-
structuring, i.e., the fractal pattern. 

Now, one can associate to these values of the fractal topological charge, 
the fractal bit, that is, a fractal physical system which can exist in two distinct 
fractal states (an unstructured state or of fractal vacuum and a structured one or 
of fractal superconductivity). These states are used in order to represent 0( )dt  

and 1( )dt , that is a single binary fractal digit. The only possible operations 
(fractal gates) that are compatible with such systems are 

the fractal IDENTITY  

( ) ( ) ( ) ( )0 0 ,1 1dt dt dt dt→ → .                             (15) 

and 
the fractal NOT (FNOT)  

( ) ( ) ( ) ( )0 1 ,1 0dt dt dt dt→ →                              (16) 

Therefore, unlike the standard bit, the fractal bit is a fractal system with 
two self-similar and scale independent states. 
 

2.3. Cnoidal Oscillation Modes, Toda Lattices and Cellular 

 Neural Networks by Means of Fractal Potential 

 
Based on the method from Jackson (1992), the solution with infinite 

fractal energy is obtained by inversion of the elliptic integral (18) and has the 
expression  

( )

1/22 0

1/22 2

2
;

1 1

s
f sn s

s s

ξ ξ   − =    +  + 

                          (17) 

  
where sn  is Jacobi elliptic function of modulus s  (Armitage, 2006). 

By the degeneracy of the elliptic function sn  with respect to its 
modulus s  one obtains for 1s→  a fractal harmonic waves package and fractal 
harmonic waves for = 0s , while for 1s→  is obtained a fractal solitons 
package and for = 1s , the fractal kink (12). 

In such a frame, the normalized fractal potential in the form  

( )
2 2 2 0

2 2
1/22 2 2 2

1 1 2
1 ;

1 1 1

d f s s
Q f cn s

f d s s s

ξ ξ
ξ

 
− − = − = − = +

 + + + 

         (18) 
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where cn  is Jacobi elliptic function of modulus s  (Armitage, 2006) specifies 
the fact that the interactions between fractal fluid entities are achieved through 
cnoidal oscillation modes of the fractal states density. Since these oscillation 
modes are associated to an one-dimensional Toda fractal lattice (Toda, 1981), 
then in its functionality we shall distinguish different regimes induced by those 
of a fractal “fluid” flow: the fractal non-quasi-autonomous given by fractal 
harmonic waves and fractal harmonic waves packages, the fractal quasi-
autonomous regime given by fractal solitons and fractal soliton packages and the 
fractal transitory one given by fractal mixtures of fractal harmonic waves 
package - solitons package type etc. For the standard details see Whitman, 1974. 

Now, by mapping, the one-dimensional Toda fractal lattice implies a 
special fractal cellular neural network (CNN) class with her entire soft, 
“archeology” etc. For the standard details see Drazin, 1992, Jackson, 1992. 

It should be noticed the fact that all above mentioned consequences are 
coordinated by the fractal potential.  

 
3. Conclusions 

 
The main conclusions of the present paper are the following: 
i) Assuming that the nervous impulse transmission through brain’s 

neuronal network is achieved on continuous and non-differentiable curves, the 
hydrodynamic version of scale relativity in arbitrary constant fractal dimension 
is used (fractal hydrodynamics); 

ii) Assuming that the external scalar potential is proportional with the 
fractal states density, the one-dimensional solution with finite fractal “energy” 
in the form of fractal kink is obtained. This solution breaks the fractal vacuum 
symmetry and generates fractal patterns by means of spontaneous symmetry 
breaking mechanism (these patterns can be identified with bacteria). Then, the 
phase coherence of the fractal patterns will produce a self-structuring of the 
fractal vacuum which is interpreted as a tendancy of the complex system to 
make structures (patterns); 

iii) Since the admissible number of fractal kinks is determined by the 
fractal topological properties of the symmetry group of eq. (4), a topological 
fractal method can be applied. Then, some elements of a fractal logic as fractal 
bit, fractal gates (fractal IDENTITY, fractal NOT) etc. are obtained; 

iv) The solution with infinite fractal “energy” is given. Then, by mes of 
specific fractal potential, the interactions among fractal “fluids” entities are 
achieved through cnoidal oscillation modes of the fractal states. Since these 
oscillation modes are associated to a one-dimensional Toda lattice, in its 
functionality we shall distinguish three various regimes induced by those of a 
fractal fluid flow: fractal non-quasi-autonomous regime through fractal 
harmonic waves and fractal harmonic wave packages, the quasi-autonomous 
regime through fractal soliton and fractal soliton packages and the transitory 



Bul. Inst. Polit. Iaşi, Vol. 62 (66), Nr. 1, 2016                              91 
 

 

one through fractal mixtures of harmonic wave package - solitons package type. 
Now, by mapping, the one-dimensional Toda lattice can be associated with a 
special fractal cellular neural network class and hence the entire arsenal implied. 

Some implications of the model we discussed in the present paper 
regarding the functionality of biological systems are given in Stoica et al., 2015; 
Duceac et al., 2015a; Duceac et al., 2015b; Doroftei et al., 2016; Nemeş  et al., 
2015; Postolache et al., 2016; Ştefan et al., 2016.  

In the following we give an example on the role communication codes 
play in the bacterial growth process. “In recent years it has become clear that the 
production of N-acyl homoserine lactones (N-AHLs) is widespread in Gram-
negative bacteria. These molecules act as diffusible chemical communication 
signals (bacterial pheromones) which regulate diverse physiological processes 
including bioluminescence, antibiotic production, plasmid conjugal transfer and 
synthesis of exoenzyme virulence factors in plant and animal pathogens. The 
paradigm for N-AHL production is in the bioluminescence (lux) phenotype of 
Photobacterium fischeri (formerly classified as Vibrio fischeri) where the 
signaling molecule N-(3-oxohexanoyl)-L-homoserine lactone (OHHL) is 
synthesized by the action of the LuxI protein. OHHL is thought to bind to the 
LuxR protein, allowing it to act as a positive transcriptional activator in an 
autoinduction process that physiologically couples cell density (and growth 
phase) to the expression of the bioluminescence genes. Based on the growing 
information on LuxI and LuxR homologues in other N-AHL-producing 
bacterial species such as Erwinia carotovora, Pseudomonas aeruginosa, Yersinia 
enterocolitica, Agrobacterium tumefaciens and Rhizobium leguminosarum, it 
seems that analogues of the P. fischeri lux autoinducer sensing system are 
widely distributed in bacteria. The general physiological function of these 
simple chemical signaling systems appears to be the modulation of discrete and 
diverse metabolic processes in concert with cell density. In an evolutionary 
sense, the elaboration and action of these bacterial pheromones can be viewed as 
an example of multicellularity in prokaryotic populations” (Salmond et al., 1995). 
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ASUPRA UNEI CLASE DE REłELE CELULARE NEURALE  
FRACTALE PE BAZA POTENłIALULUI FRACTAL ŞI IMPLICAłIILE 

ACESTEIA ÎN PROCESUL DE CREŞTERE BACTERIALĂ 
 

(Rezumat)  
 

 Considerând că în reŃeaua neuronală din creier transmiterea impulsului nervos 
se realizează pe curbe continue, dar nediferenŃiabile (curbe fractale), introducem în 
varianta hidrodinamică a relativităŃii de scală (cu dimensiune fractală arbitrară 
constantă) o clasă specială de reŃele celulare neurale la scară fractală. Prin urmare, 
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soluŃia de ,,energie” fractală infinită a modelului implică prin potenŃialul fractal moduri 
de oscilaŃie cnoidală ale densităŃii stărilor fractale. Aceste moduri pot fi asociate unei 
reŃele fractale unidimensionale Toda şi, prin mapare, unei reŃele celulare neurale 
fractale. SoluŃia cu ,,energie” fractală finită generată printr-un mecanism de rupere 
spontană de simetrie induce elemente de logică fractală cum ar fi, bitul fractal, porŃile 
fractale etc. Se dă un exemplu asupra rolului jucat de codurile de comunicare ce sunt 
fundamentate prin logica fractală în procesul de creştere celulară. 
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